Paleo-climatic and paleo-environmental evolution of the Neoproterozoic basal sedimentary cover on the Río de La Plata Craton, Argentina: Insights from the δ¹³C chemostratigraphy

Lucía E. Gómez-Peral,⁎ Alcides N. Sial, M. Julia Arrouya, Sebastián Richiano, Valderez P. Ferreira, Alan J. Kaufman, Daniel G. Poiré

Centro de Investigaciones Geológicas - CONICET-UNLP – Argentina
NEG-LABISE, Department of Geology, Federal University of Pernambuco, Recife, Brazil
Department of Geology, ESSIC, University of Maryland, College Park, MD, USA

Abstract

The Sierras Bayas Group of the Tandilia System constitutes the Neoproterozoic sedimentary cover of the Río de La Plata Craton in Argentina that accumulated amid the breakup of the Rodinia supercontinent and subsequent assembly of Gondwanaland. Evidence for glaciation in the Villa Mónica Formation (VMF) at the base of the succession comes in the form of iron-rich laminated sediments containing dropstones composed predominantly of basement crystalline rocks and quartzites that are sequentially overlain by a phosphatic mudstone and a ~40 m thick stromatolitic dolomite. Subtidal facies preserve columnar forms similar to post-glacial tubestone stromatolites seen in the Neoproterozoic records. These morphologies suggest rapid growth associated with elevated seawater alkalinity and high rates of carbonate accumulation records. The VMF dolomites in our four studied sections near Olavarría-Sierras Bayas area reveal a pronounced negative-to-positive δ¹³C up section that is similar to these cap carbonates and others worldwide. Our sedimentological and geochemical study of the VMF sections reveal consistent carbon and oxygen isotope trends that may be useful for detailed intra-basinal correlations. Samples of the VMF fabric-retentive dolomite preserve an unusually narrow range of non-radiogenic strontium isotopic compositions (0.7068 to 0.7070) that are consistent with Cryogenian limestone facies in the potential Namibian and Brazilian equivalents. Exceptional preservation of ⁸⁷Sr/⁸⁶Sr compositions suggest the possibility of primary dolomite precipitation in post-glacial seawater, and furthermore that REE patterns and distributions may yield similar insights to redox conditions in the depositional basin. In particular, the VMF dolomites reveal depleted LREE abundances, a negative Ce anomaly, positive La and Gd anomalies, and low Y/Ho values. As a whole, these observations suggest oxidizing post-glacial seawater conditions associated with significant freshwater inputs into the basin. Global warming and increases in primary productivity and organic carbon burial linked to the buildup of oxygen, the positive δ¹³C trend and the increase in stromatolite biodiversity in the VMF.

© 2017 Published by Elsevier B.V.

Keywords:
Carbon isotopes
Cryogenian stromatolitic dolostones
Redox
Cap carbonate
Tandilia

1. Introduction

Neoproterozoic strata contain evidence for the breakup of the Rodinia supercontinent, widespread glaciation, high-amplitude fluctuations in geochemical proxy records, and the radiation of eukaryotic algae to ecological prominence (Knoll et al., 2006). However, age uncertainties have precluded a better understanding of the nature and inter-relationships of these events (Macdonald et al., 2010).

Where radiometric constraints are available, the Cryogenian Period appears to include the interval between ~720 and 635 Ma (Rooney et al., 2005).

As these successions are normally unfossiliferous and poorly dated, carbon and strontium isotope data have become powerful tools for correlation within a sedimentary basin or even at global scale (Hoffman and Schrag, 2002). The term ‘cap dolostone’ is commonly used to describe dolomitic units associated with glacialogenic deposits in Neoproterozoic successions. Systematic sedimentological and geochemical analysis of carbonate rocks (mostly dolomite) shows that it is possible to characterize such units by their specific mineralogical, sedimentological, petrographic, geochemical and stratigraphic features (Corkeron, 2007).

http://dx.doi.org/10.1016/j.sedgeo.2017.03.007
0037-0738/© 2017 Published by Elsevier B.V.
Carbon isotope ratios of Neoproterozoic successions worldwide placed just at the end of a glacial event show δ13C excursions from negative to positive values (e.g., Kaufman et al., 1997; Kennedy et al., 1998; Hoffman et al., 1998). Across the same intervals, Sr-isotope data are interpreted to reflect 87Sr/86Sr variation of contemporary seawater during deposition of different carbonate sequences in the Neoproterozoic. The lowest 87Sr/86Sr values (0.7056) are consistent with 850–750 Ma seawater and higher values (0.7074 to 0.7087) with latest Neoproterozoic seawater (e.g., Jacobsen and Kaufman, 1999; Brasier and Shields, 2000; Melezhik et al., 2001; Thomas et al., 2004; Hoffman et al., 2007; Halverson et al., 2007). 87Sr/86Sr ratios are ≤0.7064 in East Greenland and ≤0.7068 in NE Svalbard, consistent with early Cryogenian values globally and inconsistent with late Cryogenian ratios, which are exclusively ≤0.7071 (Hoffman et al., 2012). In this period, dolomite predominates over limestone platforms with high stromatolite diversity and positive anomalies that are important for global correlation (Grey et al., 2011).

Apart from that, a stratigraphic pattern of C isotopic change reconstructed from numerous samples from different localities, and with different mineralogical, textural and geochemical characteristics has been assumed as a strong indicator of a robust signal (Kaufman and Knoll, 1995). Moreover, marine chemical sediments typically reflect the seawater trace and rare earth elements plus yttrium (REY) composition (e.g., Shields and Webb, 2004; Bolhar and Van Kranendonk, 2007; Frimmel, 2009) constituting another possible source of evidence of environmental changes.

On top of that, at the Río de La Plata Craton, the Villa Mónica Formation (VMF) is the only unit in Argentina that could testify all of these worldwide-identified Neoproterozoic events. The deposits of the VMF are divided into two informal sections; the lower siliciclastic section composed by conglomerates, sandstones, wackestones, diamictites and shales with phosphates, and the upper section mainly constituted by stromatolitic and laminated dolostones. In addition, the VMF is eroded at the top by a karstic surface which is a very important discordance that could even represent a ~200 Ma period of erosion (Gómez Peral et al., 2011).

New C- and O-isotope data from three different sections of the VMF are reported in this study, together with major, trace, and rare earth element concentrations dolostones. Previous δ13C values from the dolostones (Gómez Peral et al., 2007) were interpreted as a product of diagenetic overprinting. However, in the light of the data from this study, we believe that this interpretation should be reevaluated.

The main goals of this contribution are: (a) generate a model of palaeoenvironmental evolution supported by detailed sedimentological analysis, combined with geochemical data; (b) report new results of strong negative to positive δ13C up section trend in tabulate-dolomites above a diamictite with dropstones, arrive to looking for most accurate interpretation; (c) examining oxygen level conditions and probable interaction with post depositional fluids; and (d) illustrate the chemostratigraphic correlation between different sections of the dolomitic deposits from the Tandilia Basin allows to indicate its relation to extreme climate oscillations and sea level fluctuations characteristic of the Cryogenian Period.

2. Geological setting

The VMF is part of the Tandilia System is a 350 km long, northwest to southeast oriented, orographic belt, located in the Buenos Aires province (Fig. 1). The System comprises an igneous-metamorphic basement covered by Neoproterozoic to Lower Palaeozoic sedimentary rocks. The basement rocks are composed of granitoids, orthogneisses and migmatites of the Buenos Aires Complex, which has a range of Sm—Nd model ages of 2440–2668 Ma (Transamazonian) by U—Pb SHRIMP (Cingolani et al., 2002) and Sm—Nd model ages averaging 2.6 Ga (Pankhurst et al., 2003).

In the Olavarría area, the Neoproterozoic sedimentary cover is ~435 m thick (Poiré, 1987, 1993; Ilíguiz Rodríguez, 1999; Poiré and Spalletti, 2005; Gómez Peral et al., 2007, 2011; Arrouy et al., 2015; Fig. 1b) and is represented by the Sierras Bayas Group (Villa Mónica, Colombo, Cerro Largo, Olavarría and Loma Negra formations ~185 m; Fig. 1) and the La providencia Group (Avelaneda, Alica and Cerro Negro Formations ~250 m; Arrouy et al., 2015, Fig. 2). The oldest depositional unit, Villa Mónica Formation (Figs. 2, 3a–k) is divided in two sections: (a) lower VMF composed mainly by siliciclastic conglomerates and sandstones—wackestones at the base and the upper VMF(b) dolostones including shallow-marine stromatolites and shale—marls at the top (Figs. 2, 3). Acritarchs assemblage occurring in greenish claystones of the upper VMF was assigned to Leiosphaeridia minuttissima, L. tenuissima and Symplesphaeridium sp. (up to 450 μm in diameter; Gaucher et al., 2005).

The deposition of Villa Mónica Formation predates the amalgamation of Gondwana (Rapela et al., 2011) and likely accumulated in response to rifting associated with the breakup of Rodinia (Johansson, 2014).

The geochronological data available for the Sierras Bayas Group are sparse and somewhat controversial. The VMF host an important stromatolite assemblage constituted by Colonella fm., Conophyton?resotti, Conophyton fm., Cryptozoon fm., Congylyna fm., Gymnosolem fm., Inzeria fm., Jacutophyton fm., Jurasonia nivensis, Kattavia fm., Kotuikania fm., Kussiella fm., Minijaria fm., Parmites fm., Parmites cf. cocrenses and Strattifera fm. (Poiré, 1989, 1993), similar associations were described in numerous Tonian—Cryogenian successions (Cloud and Dardenne, 1973; Semikhatov, 1975, 1991; Knoll et al., 1991; Azmy et al., 2001; Batten et al., 2004; Halverson et al., 2007; Hoffman et al., 2011; Alvarenga et al., 2014; Grey et al., 2011). A minimum age for VMF of 793 ± 32 Ma (Rb—Sr) was suggested from interbedded fine-grained sedimentary rocks (Cingolani and Bonhomme, 1988) and interpreted as diagenetic overprint. Whole-rock Rb—Sr determinations on shale from this unit indicated an age of 725 ± 36 Ma (Kawashita et al., 1999). Similarly, Bonhomme and Cingolani (1980) reported an Rb—Sr age of 769 ± 12 Ma for the same unit. Detrital zircon ages for the Sierras Bayas Group were reported by Rapela et al. (2007), Gaucher et al. (2008) and Cingolani (2011), being the youngest detrital zircons of 1150 Ma (Rapela et al., 2007).

The recorded 87Sr/86Sr values from dolostones are between 0.7068 and 0.7070 (Gómez Peral et al., 2014), similar to other Cryogenian carbonates elsewhere in which they vary between 0.7060 and 0.7070 (Walter et al., 2000; Hill et al., 2000; Kaufman et al., 2009; Halverson et al., 2010).

The age of Loma Negra Formation is also debated, suggested firstly as ~540 Ma by Cloudina (Gaucher et al., 2005), how ever could be older considering δ13C and 87Sr/86Sr combined trends ~580–590 Ma (Gómez Peral et al., 2007). Moreover, in the overlaying Cerro Negro Formation, top of La providencia Group, Arrouy et al. (2016) have described typical morphs of Aspidella (related to the 560–550 Ma White Sea assemblage; Waggoner, 2003).

There are three important unconformities in the Sierras Bayas Group (Fig. 2) and middle one is of special significance for this study and has been called “Piedra Amarilla Surface” (Gómez Peral et al., 2011). It is located in the contact between the Villa Mónica and Colombo formations, allow separating the Sierras Bayas Group in two sections. According to Gómez Peral et al. (2011), different burial diagenetic histories in the siliciclastic units of the lower Sierras Bayas Group (VMF) with respect to the upper successions (Colombo, Cerro Largo and Olavarría formations; Fig. 2) can be recognized. The Piedra Amarilla surfaces also represents a long period of erosional and sub-aerial exposure, and is marked by a karstic surface (Gómez Peral et al., 2011), associated with breccias and diamictic rocks. This important unconformity was set from paleomagnetic studies around 600 Ma (Rapalini et al., 2013) and interpreted as the age of important weathering event.

The upper discontinuity, “Barker surface”, is on top of the Sierras Bayas Group and has been correlated to other Neoproterozoic surfaces.
in the SW of Gondwana in Uruguay, Brazil, South Africa and Namibia, and related tentatively to Gaskiers glaciation (Poiré et al., 2007).

2.1. Villa Mónica Formation

2.1.1. Villa Mónica sandstone-conglomerates

The basal section of the VMF (up to 22 m thick) is constituted by siliciclastic (quartz-arkosic) conglomerate-sandstones, observed in drill cores which cross cut the succession down to the contact with the basement (Poiré, 1987; Gómez Peral et al., 2011). The main detrital and authigenic components were exclusively sourced from the basement (Zimmermann et al., 2011). Gómez Peral et al. (2011) described their composition, textures and microstructures.

Below the dolostones, a pebbly iron-rich mudstone facies was recognized (Figs. 3A, B, D, 4 and 5) which is characterized by two marked textural modes (mudstone with floating pebbles: Fd) of less than a meter of thick, this was identified in one poor exposed section and in the subsoil (Fig. 3a-b). At the base of each pebble, mudstone is arched as if the clasts had dropped, also at microscopic scale (Gómez Peral et al., 2011, Fig. 6A). Textural bimodality as well as syn-sedimentary deformational microstructures suggest that the pebbles could be dropstones (Frakes and Francis, 1988; Bennett et al., 1996), associated to probable glaciomarine origin (Gómez Peral et al., 2011, 2014, Fig. 6A).

Above this diamictite, another facies was recognized characterized by black phosphate lenses and concretions with green and red shaly matrix (Ph), concentrated along bedding planes; these have previously been linked to phosphogenesis associated with Cryogenian glaciation (Figs. 3D, 4; Gómez Peral et al., 2014).

2.1.2. Villa Mónica Dolostones

The dolomitic succession (36–52 m thick; Fig. 4B, E–K) hosts a rich assemblage of stromatolites (Poiré, 1993). The variable thickness of the upper dolomitic succession can be mostly ascribed to the channeling between biostromes or bioconstructions on the top of the dolomitic-pelitic succession (Fig. 4B). In addition, Gómez Peral et al. (2011) have reported the presence of an important uplift related to a period of intense erosion and weathering with the generation of a karstic surface on top of the dolostones which constitutes a telodiagenetic surface (Fig. 3B).

The dolostones are represented by laminated and stromatolitic dolostones, interbedded with centimeter-scale green claystone beds and culminating with red marls with associated claystones (Fig. 3 C–K). The mineralogical composition of the Villa Mónica dolostones determined by X-ray diffraction (Gómez Peral, 2008) which indicates they are composed mostly by stoichiometric dolomite (75–95%), with scarce calcite (1–5%), quartz and chert (1–15%), clay minerals (2%) and feldspar (1%). Insoluble acid residue (IAR) ranges from 4.7% to 16.8% (Gómez Peral et al., 2007).

In addition, te VMF is eroded at the top by a karstic surface, which is a very important discordance that could even represent a ∼200 Ma period of erosion (Gómez Peral et al., 2011; Rapalini et al., 2013).
3. Sampling and analytical methods

The Villa Mónica dolostones have scarce outcrops as they are in closed relationship with subsurface ore activity, however, ten sections have been studied and sampled in quarries and subsurface cores. At the NE Sierras Bayas Hills three sections were studied from outcrops in quarries: one in Tres Antenas Quarry (D) and two in Piedra Amarilla/Colombo Quarries (PA and COLD; Figs. 1B, 3B). On the other hand, in the Central Sierras Bayas Hills, near Olavarría locality, seven sections were sampled (one in the Volcamaq Quarry and six in the El Polvorín Quarry; Fig. 1B). The six sections from El Polvorín Quarry have been described from drill-cores (T1, T2, T3, T4, T5 and T6; Fig. 1B). Among all of these sections analyzed, the thicker one includes ~50 m of dolostones of the VMF (Fig. 3B), for that reason, it has been studied regarding sedimentary facies analyses, paleoenvironmental characterization of the facies associations recorded, added to petrography and diagenesis.

Eighty-five polished thin sections were analyzed and stained with red S alizarin in order to differentiate between and within carbonates (Dickson, 1966).

Four of the studied sections were analyze for stable isotopes (COLD and PA in Colombo/Piedra Amarilla Quarry, and from the subsurface sections T3 and T6 from El Polvorín Quarry) as they show the complete dolostone succession. Considering Colombo Quarry (COLD) the most complete section of the Upper VMF, 27 samples were analyzed by XRF (Table 1).

Forty-three samples of dolostones were analyzed for C and O isotopes (Tables 2, COLD; T3 and T6). These analyses were performed at the Stable Isotope Laboratory (LABISE) of the Department of Geology, Federal University of Pernambuco, Brazil. Extraction of CO₂ gas from powdered samples from selected unaltered microfacies (avoiding fractures, recrystallized portions and weathered surfaces: types IV to VI of dolomite; see below) was performed in a high-vacuum line after reaction with 100% orthophosphoric acid at 25 °C for one day (three days allowed, when dolomite was present). Released CO₂ was analyzed after cryogenic cleaning in double inlet, triple-collector SIRA II or Delta V Advantage mass spectrometers and results are reported in δ notation in permil (‰) relative to the VPDB standard. The uncertainties of the isotope measurements were better than 0.1 ‰ for carbon and 0.2 ‰ for oxygen.

Fig. 2. Schematic representation of the Sierras Bayas and La Providencia groupings (Gómez Peral et al., 2014 modified).

Fig. 3. Field photos from the Villa Mónica Formation and its sedimentary facies: (A) Fd = diamictite with droptones; (B) more detailed scale of Fd facies; (C) complete section of dolostones in the Colombo Quarry; (D) contact between lower and upper Villa Mónica Formation; pH = phosphates, Dbh = domal biothermal dolostones; (E) GI = intracraton conglomerate with phosphate (black) and claystone (light green) pebbles; (F) Dbh with inner stratified stromatolites and interlayered claystones; (G) DI = stratified/laminated dolostones; (H) Dbh associated with Dbe = domal biostrome and Cl = laminated claystones interbedded; (I) Sc: columnar stromatolites; (J) Do = microscope view of oolitic dolostone; (K) MCL: reddish and purple marls and claystone interbedded; (L) detail of a coarse-boulder clast in the Colombo Diamictite.
4. Analytical results

4.1. Villa Mónica dolostones

The occurrence of the Villa Mónica dolostones was registered in Piedra Amarrilla – Colombo, Tres Antenas and Volcamaq quarries and drill cores from El Polvorín Quarry, where their thickness varies between 39 and 52 m (Figs. 1 and 5). Dolostones show mostly clear colorations with predominance of grey, yellow, and in less proportion dark coloration as brownish yellow and reddish. All dolomitic facies studied here are schematically represented and described in Fig. 4.

The basal dolomitic lithofacies is only recognized in one location at the floor of the Piedra Amarrilla Quarry, where the underlying siliclastic section (green to red shales and phosphatic lenticular concretions) of the lower VMF is poorly exposed (Fig. 3D). The first few meters of the dolostones contain columnar stromatolites that grade upward along a diffuse and transitional contact to a grey laminated dolostone (Poírè, 1993; Gaucher and Poírè, 2009). This lower contact of the dolomites, rarely exposed, it was observed in drill cores up to the basement in the El Polvorín Quarry (Fig. 3D), that is difficult to pinpoint in the field, but generally identified by a switch from shales with phosphates and a thin intraclast conglomerate level (Fig. 3E).

A total of nine sedimentary facies have been recognized in the analyzed section (Figs. 3 and 5). In this facies scheme we include from base to top, the following: (1) Fd (mudstone with dropstones) and (2) Ph (phosphate lenses with shaly matrix) which mentioned before (Figs. 3A, B, D, 4 and 5), (3) intraclast conglomerates (Gi), (4) biostromal dolostones (Db), (5) laminated green claystone (Cl), (6) laminated/stratified dolostones (Dbh), (7) domical bioherm dolostones (Dbh), (8) purple laminated dolomitic marls interbedded with red claystones (MCi), and (9) oolitic dolostones (Do) (Figs. 3B–D, 4, 5). The characterization of the sedimentary facies from the dolomitic succession includes their composition, texture, sedimentary and/or biological structures among other important characteristics (Figs. 3, 4, 5).

4.2. Petrography

Dolostones are composed almost exclusively of dolomite (80–95%), other minerals identified in very low proportion were clays, siliceous cements and iron oxides. Dolomite crystals show variable degree of recrystallization from microcrystalline fabric-preserve to a completely fabric-destructive (Fig. 6B–F). The crystalline textures are represented by six types of dolomite (I–VI) useful for establishing the diagenetic evolution (e.g. Mountjoy and Amthor, 1994; Srinivasan et al., 1994; Wright, 1997).

4.2.1. Type I

Constituted by anhedral to subhedral dolomite crystals (2–15 μm) which conform a mosaic of non-planar xenotopic texture. This is the most common and representative in all studied sections (3:1), particularly forming stratiform and domical stromatolites Di, Dbh and Dbe (Figs. 3F–I, 4, 6 B–C). Type I also constitutes the inner peloids and columnar stromatolites (~5 μm) (Fig. 6C), as well as inner rims of ooids (Fig. 6e). Under CL is dull and poor in iron.

4.2.2. Type II

This is typically a mosaic of planar euchedral rhombs (of 200–300 μm) with idiopic texture (Fig. 6D). Some crystals show iron zonation with cloudy nuclei and clean rims constituting a suflocotic texture (Fig. 6E).

4.2.3. Type III

Characterized by rhombohedral dolomite crystals (200–300 μm) rich in Fe, with a prevalent planar- or idiopic texture. Iron distribution can originate well defined or diffuse layers (Fig. 6D), and constitutes the mottled and zebra dolomite.
4.2.4. Type IV
This dolosparitic mosaic shows xenotopic texture of clean crystals variable in size (100–500 μm). This is associated to dissolution and reprecipitation of iron-rich dolomite, calcite filling up to 2 mm thick veins (Fig. 6F).

4.2.5. Type V
Constituted by anhedral saddle dolomite of 2 mm in size with sutured and serrated edges and undulant extinction, with a xenotopic non-planar texture and of clean crystals. This is infrequent and occasionally identified inner domical bioherms. A finer variety (500 μm to 1.5 mm), with planar-s hippediotopic texture is recognized in patches.

4.2.6. Type VI
It is the less common, constituted by euhedral to subhedral crystals growing in the walls-pores. This saddle dolomite display undulate extinction observed in the uppermost section near the karst (Fig. 6F).

4.3. Geochemistry
4.3.1. XRF and ICP analyses
Major element concentrations in dolostones (Colombo – Piedra Amarilla Quarry, COLD section) show average values of 28% CaO; 17% MgO; 7%SiO₂; 1.8% Fe₂O₃; 1%Al₂O₃; 0.6% K₂O; 0.2% Na₂O; TiO₂ 0.1%; and MnO 0.08% in order of abundances (Table 1).

ICP-MS analyses of forty samples from the Tres Antenas and Colombo quarries (D, COLD and PA sections; Table 2) provide accurate Sr, Rb and Mn concentrations (Table 2). Sr concentrations vary from 22 to 83 ppm (Table 2) and Mn from 250 to 500 ppm (37 samples), while in the basal and upper sections exhibits Mn values >500 ppm (3 samples) and >1000 ppm (7 samples; Table 2). Most of these Mn and Sr values are similar to those reported for other Precambrian dolostones (Mn ~ 300 to 1200 ppm, and Sr 50 to 100 ppm; see Bartley et al., 2007). Mg/Ca is 0.7 in average (Table 2), indicative of stoichiometric dolomite in most cases, while Mn/Sr is < 10 except for thirteen samples in which is > 10 (Table 2). As postulated by Bartley et al. (2007) we consider that Mn/Sr < 10 may indicate “little altered” dolostones.
Rb values vary from 0.07 to 5.3, with one exception (17.5 ppm, sample TA 33 = marly dolostone). Rb/Sr values can be divided in two sets of samples: (1) conformed by nineteen samples with least altered Rb/Sr ratios (<0.01) ranging between 0.0016 and 0.0088, and (2) the other twenty samples (Rb/Sr > 0.01) which reach values from 0.03 to 0.52 (Table 2). Some authors indicate that Rb/Sr can be considered as primary when is lower than 0.001 in limestones and ≤ 0.01 in dolostones (Bartley et al., 2001; Delpomdor and Préat, 2013).

Rare-earth element + Y analyses (REY), from twenty-three samples, show total concentrations varying from ~ 3 to 54 ppm (Table 3). With one exception all samples show positive Eu anomalies (Table 3) that is regarded as a primary signal (Shields and Stille, 2001). All samples show slight positive Y anomalies (~0.70 to 1.30), whereas Y/Ho ratios are near PAAS values, of 31 in average and in all the cases ≤40. Gd shows positive anomaly in all samples with values of 1.22 in average. Three samples show LREE enrichment (Table 3), possibly reflecting inclusion of colloidal material that contained preferentially scavenged LREE from a nearby terrigenous input source (Notholt et al., 1989).

The VMF dolostones show a record of negative Ce anomalies varying from -0.4 to -1.8 (Table 3; Fig. 7). Ce anomaly may represent primary signature if no correlation with LaN/SmN is observed, with LaN/SmN ratios > 0.35 (McArthur and Walsh, 1984; Shields and Stille, 2001; Morad and Felitsyn, 2001). Most dolostones of the VMF fulfill this requirement (18 from 23 samples; see Table 3; Fig. 7A) and their composition may reflect paleoseawater redox conditions (Fig. 7A). According to different authors, if La is enriched negative Ce anomaly could be overestimated (Bau and Dulski, 1996; Shields and Stille, 2001; Chen et al., 2003). In order to assess the degree of La enrichment (Bau and Dulski, 1996; Webb and Kamber, 2000; Notholt et al., 1989), we find that Ce anomalies in most of the samples from VMF (11) show primary negative Ce anomalies, while Ce anomaly displayed by other ten samples is probably altered signal (Fig. 7B). The later could be explained as resulting of La enrichment related to PrN or NdN. Some complementary results obtained from previous work show the REE concentrations of the phosphates and shales from the underlying level (Table 3, Fig. 7A–B). From these results, a drastic change in the Ce anomalies...
and Y/Ho mark a change in the seawater conditions from these two units (Table 3, Fig. 7).

4.3.2. Diagenesis evolution

Alteration related to process of dolomitization could be detected either petrographically, by textural features and/or presence of diagnostic minerals, or geochemically, through analysis of the behavior of some selected elements (e.g., Tucker, 1983; Knoll et al., 1986; Narbonne et al., 1994). Examples of geochemical correlations, used to identify altered samples and/or the degree of alteration of samples, are found in Marshall (1992), Wickham and Peters (1993), Kaufman and Knoll (1995), Jacobsen and Kaufman (1999), Melezhik et al. (2001) and Melezhik and Fallick (2003).

Trace-element content provides a powerful tool for assessing the degree of diagenesis. Sr, Mn, and Fe exhibit predictable behavior during rock interaction in the fluids. Some samples (from Colombo, T3 and T6 sections) from Olavarría-Sierras Bayas area vary from −4.2 to +2.6‰, shows a trend to more positive values towards the top of this section (Table 2), δ18O ranges from −0.5 to −7.5‰ in the three sections of this inner-platform dolostone (Table 2, Fig. 9).

The first isotope stratigraphic 13C curve from dolostones of Villa Mónica Formation (seventeen results from Tres Antenas section) obtained by Gómez Peral et al. (2007) was interpreted as data altered by dolomitization processes. However, in the present work the integrated analysis of depositional conditions in which this rocks accumulated, added to a combination of chemical proxies (Mn, Sr, Rb, REE concentrations, etc.) allow to demonstrate the high degree of preservation of these rocks and consequently the C and O isotopic results. Those data obtained from the Tres Antenas Quarry showed values of δ13C from −1.36 to +2.20‰ and δ18O from −2.1 to −6.5‰ (Gómez Peral et al., 2007; Table 2), which are highly correlated to the C-O isotope results from this work (Table 2). In addition, the same samples (from the Tres Antenas section) are now contrasted with results of Mn, Sr and Rb concentrations (Table 2) that are very similar to the other sections.

Dolostones immediately above the diamictite level (T3 and T6 of El Polvorín Quarry, Fig. 1B) show values of δ13C from −1.31 to +0.57‰, and from −2.03 to +0.35‰, respectively, whereby the lowest value was found near the contact with the phosphate concretions at the basal section of the dolomitic section (Table 2). From base to top, the dolostones in general show increasing δ13C values from −2 or −1‰ for the first fifteen meters (Table 2) and towards the top shows a narrow range between +1.7 up to +2.6‰ (Table 2). δ18O show apparent correlation with δ13C ratios (Table 2), but the weak correlation coefficient (R² = 0.007 in COLD, 0.26 in Tres Antenas, and 0.26 in PA sections) indicates that δ13Ccarb ratios are not altered significantly. On the other hand, they show moderate negative correlation in T3 and T6 sections from El Polvorín Quarry (R² = 0.32 and 0.64, respectively). Furthermore, δ13C...

Table 1

Major element concentrations (wt%) of dolostone from the Colombo Quarry (COLD), Villa Mónica Formation.

<table>
<thead>
<tr>
<th>Lithology</th>
<th>Sample</th>
<th>CaO</th>
<th>Al₂O₃</th>
<th>Fe₂O₃</th>
<th>MgO</th>
<th>SiO₂</th>
<th>Na₂O</th>
<th>K₂O</th>
<th>TiO₂</th>
<th>P₂O₅</th>
<th>MnO</th>
<th>LOI</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Villa Mónica Formation</td>
<td>COLD 24</td>
<td>27.37</td>
<td>1.22</td>
<td>1.12</td>
<td>17.23</td>
<td>10.12</td>
<td>0.14</td>
<td>0.41</td>
<td>0.07</td>
<td>0.01</td>
<td>0.05</td>
<td>42.08</td>
</tr>
<tr>
<td>Dolostone COLD 23</td>
<td>28.48</td>
<td>0.72</td>
<td>1.14</td>
<td>17.40</td>
<td>8.54</td>
<td>0.00</td>
<td>0.25</td>
<td>0.05</td>
<td>0.01</td>
<td>0.05</td>
<td>42.88</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 22</td>
<td>32.35</td>
<td>0.68</td>
<td>0.99</td>
<td>16.25</td>
<td>4.66</td>
<td>0.00</td>
<td>0.23</td>
<td>0.03</td>
<td>0.01</td>
<td>0.06</td>
<td>45.36</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 21</td>
<td>30.31</td>
<td>1.08</td>
<td>1.22</td>
<td>17.26</td>
<td>5.18</td>
<td>0.00</td>
<td>0.37</td>
<td>0.06</td>
<td>0.01</td>
<td>0.06</td>
<td>44.37</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 20</td>
<td>14.07</td>
<td>10.08</td>
<td>4.78</td>
<td>10.87</td>
<td>31.84</td>
<td>0.01</td>
<td>3.17</td>
<td>0.64</td>
<td>0.06</td>
<td>0.05</td>
<td>25.57</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 19</td>
<td>20.74</td>
<td>5.40</td>
<td>3.36</td>
<td>14.24</td>
<td>19.98</td>
<td>0.00</td>
<td>1.79</td>
<td>0.32</td>
<td>0.04</td>
<td>0.07</td>
<td>35.19</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 18</td>
<td>31.94</td>
<td>0.28</td>
<td>1.13</td>
<td>17.03</td>
<td>2.18</td>
<td>0.00</td>
<td>0.10</td>
<td>0.02</td>
<td>0.06</td>
<td>0.04</td>
<td>46.05</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 17</td>
<td>27.83</td>
<td>1.63</td>
<td>1.20</td>
<td>16.93</td>
<td>7.12</td>
<td>0.00</td>
<td>1.75</td>
<td>0.09</td>
<td>0.01</td>
<td>0.05</td>
<td>42.33</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 16</td>
<td>31.32</td>
<td>0.67</td>
<td>1.08</td>
<td>17.27</td>
<td>3.39</td>
<td>0.00</td>
<td>0.24</td>
<td>0.04</td>
<td>0.01</td>
<td>0.05</td>
<td>45.56</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 15</td>
<td>31.27</td>
<td>0.08</td>
<td>1.00</td>
<td>16.64</td>
<td>4.57</td>
<td>0.00</td>
<td>0.24</td>
<td>0.04</td>
<td>0.01</td>
<td>0.05</td>
<td>45.39</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 14</td>
<td>31.54</td>
<td>0.16</td>
<td>0.86</td>
<td>19.01</td>
<td>0.84</td>
<td>0.00</td>
<td>0.05</td>
<td>0.01</td>
<td>0.05</td>
<td>0.05</td>
<td>46.91</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 13</td>
<td>31.16</td>
<td>0.48</td>
<td>0.72</td>
<td>18.91</td>
<td>0.76</td>
<td>0.00</td>
<td>0.16</td>
<td>0.04</td>
<td>0.01</td>
<td>0.05</td>
<td>47.37</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 12</td>
<td>31.18</td>
<td>0.17</td>
<td>0.73</td>
<td>18.46</td>
<td>1.77</td>
<td>0.04</td>
<td>0.05</td>
<td>0.02</td>
<td>0.04</td>
<td>0.04</td>
<td>47.42</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 11</td>
<td>31.07</td>
<td>0.64</td>
<td>0.95</td>
<td>18.35</td>
<td>1.35</td>
<td>0.00</td>
<td>0.20</td>
<td>0.06</td>
<td>0.04</td>
<td>0.05</td>
<td>46.91</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 10</td>
<td>31.51</td>
<td>0.76</td>
<td>0.95</td>
<td>17.41</td>
<td>2.17</td>
<td>0.00</td>
<td>0.26</td>
<td>0.07</td>
<td>0.01</td>
<td>0.06</td>
<td>44.89</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 9</td>
<td>30.21</td>
<td>0.57</td>
<td>1.06</td>
<td>18.20</td>
<td>2.33</td>
<td>0.03</td>
<td>0.21</td>
<td>0.05</td>
<td>0.01</td>
<td>0.07</td>
<td>45.40</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 8</td>
<td>27.93</td>
<td>1.43</td>
<td>2.19</td>
<td>17.27</td>
<td>7.05</td>
<td>0.00</td>
<td>0.50</td>
<td>0.10</td>
<td>0.04</td>
<td>0.14</td>
<td>42.58</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 7</td>
<td>28.47</td>
<td>1.32</td>
<td>1.87</td>
<td>18.13</td>
<td>4.73</td>
<td>0.00</td>
<td>0.46</td>
<td>0.10</td>
<td>0.03</td>
<td>0.08</td>
<td>43.34</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 6</td>
<td>28.00</td>
<td>1.59</td>
<td>2.50</td>
<td>17.26</td>
<td>7.51</td>
<td>0.00</td>
<td>0.55</td>
<td>0.11</td>
<td>0.03</td>
<td>0.14</td>
<td>41.84</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 5</td>
<td>25.79</td>
<td>1.73</td>
<td>2.63</td>
<td>16.94</td>
<td>7.27</td>
<td>0.01</td>
<td>0.59</td>
<td>0.12</td>
<td>0.03</td>
<td>0.14</td>
<td>41.81</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 4</td>
<td>25.74</td>
<td>2.30</td>
<td>2.84</td>
<td>15.86</td>
<td>8.86</td>
<td>0.00</td>
<td>0.79</td>
<td>0.16</td>
<td>0.03</td>
<td>0.15</td>
<td>40.51</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 3</td>
<td>25.55</td>
<td>2.10</td>
<td>2.56</td>
<td>16.74</td>
<td>5.97</td>
<td>0.09</td>
<td>0.66</td>
<td>0.14</td>
<td>0.04</td>
<td>0.16</td>
<td>42.31</td>
<td></td>
</tr>
<tr>
<td>Dolostone COLD 2</td>
<td>23.11</td>
<td>2.37</td>
<td>3.58</td>
<td>14.43</td>
<td>13.57</td>
<td>0.00</td>
<td>0.76</td>
<td>0.15</td>
<td>0.08</td>
<td>0.24</td>
<td>41.62</td>
<td></td>
</tr>
</tbody>
</table>
Table 2
C- and O- isotope and trace element composition of Villa Mónica dolostones from drill cores of El Polvorín Quarry (T3 and T6 sections), additional data from Tres Antenas Quarry in cursive (Gómez Peral et al., 2007).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lithofacies / environment</th>
<th>Microfacies</th>
<th>Height (m)</th>
<th>(^{14}C) (‰ PDB)</th>
<th>(^{13}C) (‰ PDB)</th>
<th>ICP-MS (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T3 4.3</td>
<td>LD + TF</td>
<td>Type II</td>
<td>4.3</td>
<td>0.5</td>
<td>-0.4</td>
<td></td>
</tr>
<tr>
<td>T3 15.5</td>
<td>LD + TF</td>
<td>Type II</td>
<td>15.5</td>
<td>-0.8</td>
<td>-0.8</td>
<td></td>
</tr>
<tr>
<td>T3 15.8</td>
<td>LD + TF</td>
<td>Type I</td>
<td>15.8</td>
<td>-0.7</td>
<td>-0.5</td>
<td></td>
</tr>
<tr>
<td>T3 20.5</td>
<td>SD + FR</td>
<td>Type II</td>
<td>20.5</td>
<td>1.0</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>T3 27.6</td>
<td>SD + FR</td>
<td>Type II</td>
<td>27.6</td>
<td>-0.8</td>
<td>-0.8</td>
<td></td>
</tr>
<tr>
<td>T3 32.5</td>
<td>SD + FR</td>
<td>Type II</td>
<td>32.5</td>
<td>1.2</td>
<td>1.2</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lithofacies / environment</th>
<th>Microfacies</th>
<th>Height (m)</th>
<th>(^{14}C) (‰ PDB)</th>
<th>(^{13}C) (‰ PDB)</th>
<th>ICP-MS (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D 10</td>
<td>M + DF + SP</td>
<td>Type I</td>
<td>10.9</td>
<td>0.5</td>
<td>-0.5</td>
<td></td>
</tr>
<tr>
<td>D 13</td>
<td>SD + FR</td>
<td>Type II</td>
<td>13.0</td>
<td>-0.9</td>
<td>-0.9</td>
<td></td>
</tr>
<tr>
<td>D 14</td>
<td>SD + FR</td>
<td>Type II</td>
<td>14.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>D 15</td>
<td>SD + FR</td>
<td>Type II</td>
<td>15.0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>D 16</td>
<td>SD + FR</td>
<td>Type II</td>
<td>16.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lithofacies / environment</th>
<th>Microfacies</th>
<th>Height (m)</th>
<th>(^{14}C) (‰ PDB)</th>
<th>(^{13}C) (‰ PDB)</th>
<th>ICP-MS (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D 20</td>
<td>M + DF + SP</td>
<td>Type I</td>
<td>20.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>D 21</td>
<td>SD + FR</td>
<td>Type II</td>
<td>21.0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>D 22</td>
<td>SD + FR</td>
<td>Type II</td>
<td>22.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>D 23</td>
<td>SD + FR</td>
<td>Type II</td>
<td>23.0</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>D 24</td>
<td>SD + FR</td>
<td>Type II</td>
<td>24.0</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sample</th>
<th>Lithofacies / environment</th>
<th>Microfacies</th>
<th>Height (m)</th>
<th>(^{14}C) (‰ PDB)</th>
<th>(^{13}C) (‰ PDB)</th>
<th>ICP-MS (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D 25</td>
<td>M + DF + SP</td>
<td>Type I</td>
<td>25.0</td>
<td>1.0</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>D 26</td>
<td>SD + FR</td>
<td>Type II</td>
<td>26.0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
</tr>
<tr>
<td>D 27</td>
<td>SD + FR</td>
<td>Type II</td>
<td>27.0</td>
<td>3.0</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>D 28</td>
<td>SD + FR</td>
<td>Type II</td>
<td>28.0</td>
<td>4.0</td>
<td>4.0</td>
<td></td>
</tr>
<tr>
<td>D 29</td>
<td>SD + FR</td>
<td>Type II</td>
<td>29.0</td>
<td>5.0</td>
<td>5.0</td>
<td></td>
</tr>
</tbody>
</table>

[Table continues]
Table 3

REE + Y analyses, Ce, Gd (ppm), Eu anomalies and elemental ratios for dolostones from the Tres Antenas and Colombo quarries (PA section).

<table>
<thead>
<tr>
<th>Sample</th>
<th>La (ppm)</th>
<th>Ce (ppm)</th>
<th>Pr (ppm)</th>
<th>Nd (ppm)</th>
<th>Sm (ppm)</th>
<th>Eu (ppm)</th>
<th>Gd (ppm)</th>
<th>Tb (ppm)</th>
<th>Dy (ppm)</th>
<th>Y (ppm)</th>
<th>Ho (ppm)</th>
<th>Er (ppm)</th>
<th>Tm (ppm)</th>
<th>Yb (ppm)</th>
<th>Lu (ppm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tres Antenas Quarry</td>
<td></td>
</tr>
<tr>
<td>D1</td>
<td>1.51</td>
<td>0.19</td>
<td>0.82</td>
<td>0.20</td>
<td>0.06</td>
<td>0.27</td>
<td>0.04</td>
<td>0.23</td>
<td>1.8</td>
<td>0.05</td>
<td>0.15</td>
<td>0.02</td>
<td>0.12</td>
<td>0.02</td>
<td>5.4</td>
</tr>
<tr>
<td>D3</td>
<td>1.35</td>
<td>1.46</td>
<td>2.11</td>
<td>0.19</td>
<td>0.06</td>
<td>2.62</td>
<td>0.35</td>
<td>1.97</td>
<td>1.21</td>
<td>0.05</td>
<td>1.02</td>
<td>35</td>
<td>1.60</td>
<td>1.26</td>
<td>1.09</td>
</tr>
<tr>
<td>D5</td>
<td>1.20</td>
<td>2.19</td>
<td>0.29</td>
<td>1.24</td>
<td>0.50</td>
<td>0.08</td>
<td>0.40</td>
<td>0.06</td>
<td>0.34</td>
<td>1.21</td>
<td>0.05</td>
<td>1.02</td>
<td>34</td>
<td>1.42</td>
<td>1.52</td>
</tr>
<tr>
<td>D9</td>
<td>1.65</td>
<td>1.39</td>
<td>0.18</td>
<td>0.90</td>
<td>0.20</td>
<td>0.05</td>
<td>0.27</td>
<td>0.04</td>
<td>0.22</td>
<td>1.7</td>
<td>0.04</td>
<td>0.14</td>
<td>0.02</td>
<td>0.11</td>
<td>0.01</td>
</tr>
<tr>
<td>D11</td>
<td>0.70</td>
<td>0.88</td>
<td>0.11</td>
<td>0.49</td>
<td>0.16</td>
<td>0.05</td>
<td>0.19</td>
<td>0.03</td>
<td>0.34</td>
<td>2.3</td>
<td>0.07</td>
<td>0.21</td>
<td>0.02</td>
<td>0.12</td>
<td>0.02</td>
</tr>
<tr>
<td>D15</td>
<td>1.45</td>
<td>2.03</td>
<td>0.55</td>
<td>2.69</td>
<td>0.75</td>
<td>0.20</td>
<td>0.95</td>
<td>0.13</td>
<td>0.71</td>
<td>4.0</td>
<td>0.14</td>
<td>0.39</td>
<td>0.05</td>
<td>0.30</td>
<td>0.04</td>
</tr>
<tr>
<td>D17</td>
<td>3.30</td>
<td>6.11</td>
<td>0.86</td>
<td>3.76</td>
<td>1.04</td>
<td>0.27</td>
<td>1.28</td>
<td>0.16</td>
<td>0.89</td>
<td>4.9</td>
<td>0.17</td>
<td>0.46</td>
<td>0.06</td>
<td>0.35</td>
<td>0.05</td>
</tr>
<tr>
<td>Piedra Amarilla Quarry</td>
<td></td>
</tr>
<tr>
<td>PA1</td>
<td>6.71</td>
<td>1.69</td>
<td>0.23</td>
<td>0.94</td>
<td>0.23</td>
<td>0.06</td>
<td>0.31</td>
<td>0.04</td>
<td>0.27</td>
<td>1.8</td>
<td>0.05</td>
<td>0.16</td>
<td>0.02</td>
<td>0.13</td>
<td>0.02</td>
</tr>
<tr>
<td>PA10</td>
<td>4.23</td>
<td>7.40</td>
<td>1.04</td>
<td>4.16</td>
<td>1.10</td>
<td>0.28</td>
<td>1.34</td>
<td>0.17</td>
<td>0.97</td>
<td>5.9</td>
<td>0.19</td>
<td>0.52</td>
<td>0.07</td>
<td>0.40</td>
<td>0.05</td>
</tr>
<tr>
<td>PA21</td>
<td>1.34</td>
<td>1.94</td>
<td>0.23</td>
<td>0.91</td>
<td>0.21</td>
<td>0.05</td>
<td>0.28</td>
<td>0.04</td>
<td>0.22</td>
<td>1.4</td>
<td>0.04</td>
<td>0.12</td>
<td>0.01</td>
<td>0.09</td>
<td>0.01</td>
</tr>
<tr>
<td>PA22</td>
<td>8.40</td>
<td>14.80</td>
<td>2.10</td>
<td>8.26</td>
<td>1.78</td>
<td>0.40</td>
<td>2.24</td>
<td>0.28</td>
<td>1.49</td>
<td>7.3</td>
<td>0.28</td>
<td>0.76</td>
<td>0.09</td>
<td>0.59</td>
<td>0.08</td>
</tr>
<tr>
<td>PA25</td>
<td>3.06</td>
<td>5.73</td>
<td>0.72</td>
<td>2.96</td>
<td>0.71</td>
<td>0.17</td>
<td>0.90</td>
<td>0.11</td>
<td>0.64</td>
<td>3.5</td>
<td>0.12</td>
<td>0.34</td>
<td>0.04</td>
<td>0.26</td>
<td>0.04</td>
</tr>
</tbody>
</table>
| **PA section is comparable to COLD: the same locality.**

5. Discussion

5.1. Paleoenvironmental evolution

Some paleoenvironmental considerations arise from the observation of the vertical distribution of the three facies associations (FAs) recognized between the end of the lower and the upper Villa Mónica Formation (VMF) (Figs. 4 and 5). At the last 10 m of lower VMF it is possible to recognize a FA that could be related to a glacial event supported by the presence of dropstones in clays, as previously interpreted by Gómez Peral et al. (2011, 2014). This FA is interpreted as developed in outer shelf settings, in a clear transgressive pattern, which contain a maximum flooding surface that promotes the authigenic precipitation of phosphate minerals as the result of minimal sedimentation rates. Over the lower VMF, the two FAs recognized in the upper VMF are related to a marine platform environment. FA2 includes an intraformational conglomerate with dolomitic marly matrix from the basal section of the unit, which is interpreted as the result of erosive regressive surface. It is important to note that, the time involving to the development of this surface was enough to generate phosphate pebbles, but not so long because there is not a clear age differentiation between lower and upper VMF (Gómez Peral et al., 2014). The rest of the FA2 is constituted by columnar, domical and stratified stromatolites (conforming biostromes and bioherms) and laminated dolostones, interbedded with thin levels of green claystones. The FA2 is interpreted as deposited in an intertidal to subtidal environment, in which minor changes of sea level and/or energy of the environment generate different stromatolitic morphologies (Serebrjakov, 1976; Southgate, 1989; Poiré, 1993; Batten et al., 2004; Hoffman et al., 2012). Finally, the FA3 is constituted by interbedded reddish to purple marls with claystones (MCI), and oolitic dolostones (Do) on the top. The occurrence of terrigenous supply as well as the presence of ooids, can be interpreted as deposited in a shallowing upward trend, that grade from lower intertidal to higher energetic conditions into a supratidal setting (e.g., Jones and Derochers, 1992; Poiré, 1993; Wanless and Tedesco, 1993; Wright and Burchette, 1998; Batten et al., 2004; Hoffman et al., 2012), evidenced by tidal channels at the top.

In summary, from base to top, three main aspects should be highlighted: (1) a shift from siliciclastic to carbonate composition of the VMF; (2) a general transgression-regression pattern, which is evidenced by turning from an outer shelf to inner platform deposits; and (3) the existence of dolostones with large stromatolite communities especially the tubestone morphologies related to post-glacial cap carbonate (Corsetti and Grotzinger, 2015), could be considered as a clear evidence of a more favorable climatic conditions for the life (Wallace et al., 2015). All of these aspects will be deeper discussed below.

5.2. Dolomicrite and dolosparite origin

Dolomicrite constitutes the most common dolomite microtexture in stromatolitic and laminated dolostones of VMF. This dolomite type (1) was previously interpreted as the result of early dolomitization of calcite precursor (Poiré, 1987; Gómez Peral et al., 2007), as reported in other Neoproterozoic units (Zempolich et al., 1988; Zempolich and Baker, 1993; Gaucher et al., 2007). However, many authors reported that the very fine-grained nature of most dolomite implies that Neoproterozoic postglacial dolomite precipitated first as powder, possibly in the water column of the surface mixed layer before deposition and cementation (Riedgwell et al., 2003; Shields et al., 2007; Azmy et al., 2009). It is difficult to determine whether dolomite was the
primary carbonate precipitate, but this possibility cannot be ruled out. In this case, primary dolomite could be constituted by dolomicrite (Fig. 6B–C). The saturation on dolomite of the ocean, which has been widely mentioned for Cryogenian successions, changed rapidly during and/or immediately following the deglaciation. This event is possibly developed within a short $10^3–10^4$ year time frame of lithospheric relaxation, which is consistent with that envisaged in the Snowball-Earth Hypothesis (Hoffman et al., 1998, 2007; Hoffman and Schrag, 2002; Shields et al., 2007; Hood et al., 2011).

By contrast, the displacive growth of larger (<1 mm) dolomite crystals (Types II, III, and IV) within or in association with the dolomicrite speaks for substantial precipitation (cementation) of dolomite during diagenesis within the sediment, in many cases almost entirely replacing the original sediment.

Types II and III of dolomite are considered as aggradation of type I with typical planar-e textures (Fig. 6D), and internally can present alternation of rich and poor in iron dolomite. Ferrous dolomite is commonly associated with burial diagenesis indicating that type III represents an advanced stage of burial respect to type II. Also most of the stratified dolostones are constituted by types II and IV.

Types IV and V represent pervasive dolomitization by dissolution, replacement and recrystallization of the primary textures (Fig. 6F). Saddle dolomite is associated with deep burial dolomitization or as the product of interaction with later fluids (Tucker and Wright, 1990; Mountjoy and Amthor, 1994; Flügel, 2004).

5.3. REE–Y patterns

In order to determine whether the observed C isotopic compositions are likely to record a secular pattern of C isotopic change, we use other tools as microscopic analysis as well as REE–Y determinations. Numerous carbon isotopic studies have shown that stratigraphic $\delta^{13}C$ patterns are retained even with significant diagenesis (e.g., Fairchild et al., 1990; Kaufman et al., 1991; Frank and Lyons, 2000; Bartley et al., 2007).

The work of Banner et al. (1988) suggests that where diagenetic fluids and rocks have similar REE distributions, not being significantly changed by dolomitization. Hence, the difference between an assumed initial seawater-like REE signature in clean carbonates and the observed patterns in samples that have undergone extensive dolomitization or exposure to other mineralizing fluids may carry information about the chemistry, and possibly the source of those fluids (Nothdurft et al., 2004).

One indicator of preservation of the primary patterns is when the \sumREE concentrations are relatively low, and show no correlation with iron, regarding that the average concentrations in REE are near 20 ppm (Frimmel, 2009; Wang et al., 2014) (Table 3, Fig. 8d). Moreover, samples with higher Fe have similar REE concentrations (Fig. 8d), but in the Piedra Amarilla Quarry samples show lower Fe concentrations of 3800 ppm in average compared with those from Tres Antenas Quarry ($\approx 11,000$ ppm in average; Table 3, Fig. 8d), suggesting that diagenetic Fe does not play a major role in controlling REE patterns.

It is important to highlight that the presence of negative Ce anomalies in dolostones, typical of seawater (Fig. 7b), is a good paleoredox indicator of the primary water body (Wright et al., 1987; Nothdurft et al., 2004; Flügel, 2009).

The Y/Ho ratio in open seawater range typically between 44 and 90 but is strongly dependent on salinity (Lawrence et al., 2006). This makes the Y/Ho ratio a particularly useful monitor for the differentiation between marine and fresh water influence deposits (Bau, 1996; Nozaki et al., 1997; Nothdurft et al., 2004; Bolhar and Van Kranendonk, 2007; Wang et al., 2014). The Y/Ho ratios for almost all analyzed samples are within the range given for mixed seawater with fresh waters (≤ 40; Table 3).

5.4. Intrabasinal chemostratigraphic correlations

In order to better constrain the position of the VMF within the emerging Neoproterozoic carbon isotopic framework, we examined the isotopic characteristics of the known portions of the global curve. Dolostones are composed mainly by stoichiometric dolomite with Mg/Ca ≥ 0.6 (Table 2) also in agreement with X-ray determinations (Gómez Peral et al., 2007; Gómez Peral, 2008). The sedimentary isotopic records in this unit are considered near-primary because of the petrographic and geochemical proxies mentioned (Mn/Sr, REE, Ce anomalies), added to the $\delta^{18}O, \delta^{13}C$ values (Table 2; Figs. 8 and 9).

C and O-isotope chemostratigraphic curves compare variations from three sections of dolostones of the VMF (Fig. 9). They may be used for regional isotopic correlation and compared between all the studied sections. There is a clear positive trend in $\delta^{13}C$ upwards the dolomitic section of VMF. The predominant chemostratigraphic feature at this stratigraphic level is the presence of $\delta^{13}C$-depleted $\delta^{13}C$ values (≈ -2 to 0‰) in the basal section, which shows similar trends to other reported in Cryogenian cap dolostones (Giddings and Wallace, 2009; Macdonald et al., 2010; Grey et al., 2011). These same authors indicate values showing excursions upwards of $\delta^{13}C$ up to $+5$‰ in those Cryogenian rocks, which are not recorded in Villa Mónica dolostones ($\leq +2.6$‰). Taking into consideration that the $\delta^{13}C$ shows a positive trend upwards the VMF, we postulate that the most positive $\delta^{13}C$ values can have been removed when the karstic surface eroded down the succession which
is seen with reduced thickness (~40 m). Moreover, considering this carbonate platform could have been developed in a marginal setting of the Southwestern proto-Gondwana in which case VMF could represent an incomplete δ¹³C record.

In addition, cap dolostones superseding Cryogenian glaciations show δ¹⁸O (VPDB) values of −6 to −8‰, that are similar to the obtained for dolostones of VMF (−4 to −8‰; Table 2, Fig. 10), (Hoffman and Schrag, 2002), and distinctly lower than typical Neoproterozoic dolostones (Halverson et al., 2007).

Fig. 8. Element concentrations versus isotope data for the Villa Mónica Formation: (A) Sr (ppm) vs. δ¹⁸O; (B) Mn (ppm) vs. δ¹⁸O; (C) Mn (ppm) vs. Fe (ppm); (D) Fe (ppm) vs. ∑REE; (E) δ¹³C vs. Fe/Sr, and (F) δ¹³C vs. Mn/Sr.

Villa Mónica dolostones show widespread preservation of near primary microtextures (Types I and II; Fig. 6B, C and D) and less common textures related to moderate and local alteration (types III–VI; Fig. 6 F), with a consistent pattern of variation in carbon isotopic composition. Although it is presently impossible to establish that the VMF and other Cryogenian cap-dolostones are coeval, they are likely to be broadly similar. These units exhibit a style of variation that suggests that the transition between predominantly 0‰ to positive values +2.6‰, suggestive of the post-glaciation steady state characterized by higher
A rise in $^{87}\text{Sr}/^{86}\text{Sr}$ ratios from 0.7063 withinglacial deposits (Calver, 1998) to 0.7071 in interglacial succession (McKirdy et al., 2001) also compares closely with global records for Cryogenian dolostones. The Villa Mónica dolostones have relatively low and similar $^{87}\text{Sr}/^{86}\text{Sr}$ ratios (0.7068 to 0.7070; Gómez Peral et al., 2014), a feature interpreted as indication of near absence of post-depositional changes. Mn/Sr ratios < 6 and $\delta^{18}\text{O} \geq 4.5\%$ reinforce that the Sr-isotope ratios should represent near-primary seawater isotopic values (Fig. 8A-B), also considering Rb/Sr obtained here of 0.0016 and 0.0078 respectively (samples PA11 and PA 25, Table 2).

Sr content in Villa Mónica dolostones is low (~50 ppm in average), in this regard it is known that Sr is systematically excluded from the tighter dolomite lattice structure during dolomitization, resulting in dolostones with lower Sr content than coeval limestone (Bartley et al., 2007). However, other authors suggest that higher Sr isotope values related to dolomitization point to a detrital input or contamination by diagenetic fluids (Demaiffe and Fierrens, 1981).

On the other hand, fresh water commonly presents low Sr contents (Brand and Veizer, 1981; Veizer, 1983), which is provided considerably during melt of ice sheets, decreasing the Sr from the sea in which dolostone platform develops. In agreement with that the precipitation of dolomite from mixed sea- and freshwater can explain the Sr-depleted fluids as the precursor of this dolomite Type I (Vahrenkamp and Swart, 1994; Azmy et al., 2001, 2009).

5.5. Paleoclimatic and paleoenvironmental controls on chronostratigraphy

A comparison between REE and Y analyses of dolostones and phosphates (Gómez Peral et al., 2014), shows a drastic change in the Ce anomalies and Y/Ho that attest to a contrast in the seawater conditions from the two informal members of the lower and the upper Villa Mónica Formation (Table 3, Fig. 11).

The underlain phosphate level displays positive Ce anomalies (Fig. 7A-B; Gómez Peral et al., 2014), which make a contrast with the negative Ce anomalies registered in the upper dolostones in the present work (Fig. 11). This change can be associated with a progressive oxygenation and recirculation of seawater during implantation of the dolomitic platform related to an important sea level drop. This lithological boundary reflects a marked trend in $\delta^{13}\text{C}$ values from negative to positive as recorded in carbonates (e.g., Aharon et al., 1987; Banerjee et al., 1997; Mazumdar et al., 1999).

The phosphate level may have been precipitated under the effect of upwelling currents in a stratified sea (Gómez Peral et al., 2014). On the other hand, the dolomitic platform shows normal oxygen patterns, which can be associated with shallower setting. Then, if in deeper environment the sea was stratified, it cannot be told from the analyzed succession.

A considerable freshwater influence may be inferred for the depositional environments of these dolostones, those of the freshwaterstromatolites from the VMF (Y/Ho < 30; Table 3). Continental deglaciation at the end of a glacial time would result in locally elevated freshwater levels in the platform with enhanced input of oxidants (i.e. O, NO$_3$) from the weathered continental crust (Svensen et al., 2004; Wang et al., 2014), which also may favors the primary precipitation of dolomircite. Therefore, the oxygenated freshwater and brackish water environment should be as a response to the deglacial melt water input into the basin also reflected in low Sr contents of the dolomircite analyzed.

As mentioned above, the basal portions of the VMF display negative $\delta^{13}\text{C}$ values that can be associated with cooler water conditions as was interpreted in other Neoproterozoic units (i.e. Halverson et al., 2007). This is supported by the presence of the underlaying mudstone with dropstones added to the postglacial phosphogenesis event recorded in the lower VMF (Gómez Peral et al., 2014). The shift to positive $\delta^{13}\text{C}$ values upwards (upper VMF) is in agreement with a climatic change to warmer conditions, consistent with the formation of the Sr-poor dolomite as the result of mixed melt- and seawater. Moreover, the increase in stromatolite biodiversity to the upper VMF reinforces the interpretation to more favorable climate conditions sustained by trends in $\delta^{13}\text{C}$.

Considering the sea-level changes, it is important to note that even when the upper VMF results from deposition during a post-glacial period, a considerable sea-level fall can be interpreted by the sedimentological data. This could be explaining, by the relationship between the eustatic variation and the isostatic rebound (Fig. 11). In this sense, during the final stage of deposition of the lower VMF, an early post-glacial scenario is the responsible of the generation of upwelling currents that results in the deposition of phosphates (Fig. 11). In this context, the eustatic positive variation is greater than the isostatic rebound generated by deglaciation, resulting in a relative sea-level rise. After that, acceleration in glacial-melt promotes an increase in the isostatic rebound, which highly exceeds the still positive eustacy, generating a marked regressive surface, and the beginning of the upper VMF. This change caused an important input of freshwater that contributes to the development of the dolomitic platform (Fig. 11). Finally, the interpretation of proximity to glacial areas is supported by different source of evidence (i.e. dropstones, chemical melt-water signatures, among other), but tillites or others unquestionable evidence have never been observed or mentioned in the study area.

6. Conclusions

The Villa Mónica dolostones, were previously framed between 1150 and 600 Ma, and represents the oldest sedimentary cover of the Río de La Plata Craton in Argentina, however shows very restricted post depositional alteration, as evidenced by preservation of primary dolomicrite microtexture.

In this basin-wide study of the Neoproterozoic Villa Mónica Formation (VMF) in Argentina, major and trace element proxies indicate a primary $\delta^{13}\text{C}$ signature reflected by different dolomitic facies, which show similar trends along all the studied sections in the Tandilia Basin. For that reason, $\delta^{13}\text{C}$ results previously interpreted as diageneric overprinted needed to be reevaluated in the present work.

The negative $\delta^{13}\text{C}$ values characterize the contact between the dolostones and phosphate level (~-2%), slightly higher ratios
Fig. 10. Intrabasinal chemostratigraphic correlation between four sections of the Villa Mónica dolostones (Three from this work, and one from Gómez Peral et al., 2007). The arrows indicate the positive trend in δ^{13}C throughout the dolomitic facies succession. Ce anomalies are correlated in one section (Colombo Quarry).
Fig. 11. Schematic representation to explain the trend in dissolved inorganic carbon (DIC) in $\delta^{13}C$, Ce anomalies related to redoxcline (Eh = 0) and seawater salinity. (a) Paleoenvironment scheme of the lower Villa Mónica Formation with a stratified basin during initial deglaciation related to low Eh (positive Ce anomaly) and negative $\delta^{13}C$. (b) Paleoenvironment scheme of the upper Villa Mónica Formation with normal circulation of oxygen leading to negative Ce anomalies and positive $\delta^{13}C$, associated with high meltwater discharge during an interglacial interval.
References

Serebryakov, S.N., 1976. Biotic and Abiotic Factors Controlling the Morphology of
Shields, G., Webb, G., 2004. Has the REE Composition of Seawater Changed Over Geolog-
Southgate, P.N., 1989. Relationships between cyclicity and stromatolite form in the Late
Svensen, H., Planke, S., Malthe-Sorenssen, A., Jamtveit, B., Myklebust, R., Eidem, T.R., Rey,